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We calculate the electrical conductivity of polycrystalline metallic films by means of a semi-numerical
procedure that provides solutions of the Boltzmann transport equation, that are essentially exact, by
summing over classical trajectories according to Chambers' method. Following Mayadas and Shatzkes
(MS), grain boundaries are modeled as an array of parallel plane barriers situated perpendicularly to the
direction of the current. Alternatively, according to Szczyrbowski and Schmalzbauer (SS), the model
consists in a triple array of these barriers in mutual perpendicular directions. The effects of surface
roughness are described by means of Fuchs' specularity parameters. Following SS, the scattering prop-
erties of grain boundaries are taken into account by means of another specularity parameter and a
probability of coherent passage. The difference between the sum of these and one is the probability of
diffuse scattering. When this formalism is compared with the approximate formula of Mayadas and
Shatzkes (Phys. Rev. B 1, 103 (1986)) it is shown that the latter greatly overestimates the film resistivity
over most values of the reflectivity of the grain boundaries. The dependence of the conductivity of thin
films on the probability of coherent passage and grain diameters is examined. In accordance with MS we
find that the effects of disorder in the distribution of grain diameters is quite small. Moreover, we find
that it is not safe to neglect the effects of the scattering by the additional interfaces created by stacked
grains. However, when compared with recent resitivity-thickness data, it is shown that all three form-
alisms can provide accurate fits to experiment. In addition, it is shown that, depending on the respective
reflectivities and distance from a surface, some of these interfaces may increase or diminish considerably
the conductivity of the sample. As an illustration of this effect, we show a tentative fit of resistivity data
of gold films measured by Chen et al. (Appl. Phys. 60, 659 (2005)). Finally, we present a new version of
Matthiessen's rule that describe, with high accuracy, the way in which the contributions from surface
scattering and grain boundary combine to form the total resistivity of the sample.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The fact that the transport coefficients of small samples are not
independent of size or shape was first observed in measurements
of the electrical conductivity of thin silver films [1]. It was noted
that this phenomenon occurs when one or more of the dimensions
of the sample is comparable in length with the mean free path of
the carriers.

The earliest theoretical treatment of the electrical conductivity
of thin films was given by Thomson, who assumed that—in ac-
cordance with Drude's theory—the conductivity in metals was
proportional to the mean free path and that the scattering at the
. Moraga).
external surfaces was completely diffuse [2]. The theory was
considerably advanced by Fuchs, who proceeded from a solution of
Boltzmann transport equation (instead of using the restricted tools
of kinetic theory) and introduced appropriate boundary conditions
[3,4].

If the conduction electrons are perturbed only by an electric
field E, and we assume further the validity of Ohm's law and the
existence of a time of relaxation τ, the Boltzmann equation is [5]
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This equation is solved for the function ( )f r v,1 that describes the
distribution of carriers that are out of thermodynamical equili-
brium. The equilibrium population is given by the Fermi-Dirac
distribution μ= { [( − ) ] + }−f k Texp / 1B0

1. As boundary conditions
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Fuchs assumed that, at each external surface, a fraction p of the
incoming electrons are specularly reflected (that is, the tangential
component of the velocity is conserved but the normal component
changes sign), while the remaining fraction = −q p1 is randomly
scattered and thereafter lost from the conduction process. Fuch's
boundary conditions have been generalized by Lucas who allowed
for the fact that different surfaces may have different specularity
parameters [6]. A number of authors have additionally generalized
this schema by assuming that these parameters are in fact func-
tions of the angle of incidence [7].

Fuch's theory accounts only for the scattering of the conduction
electrons by the external surfaces and, thus, strictly applies only to
single-crystal films. Mayadas and Shatzkes proposed a formula
that explains the additional resistivity often found in practice as
arising from the scattering from grain boundaries—a mechanism
that becomes especially important when grain diameters are
comparable in size to the electronic mean free path [8]. In this
formalism grain boundaries are represented by a parallel array of
plane barriers, in the form of repulsive Dirac delta potentials, and
oriented perpendicularly to the direction of the electric field E
(which we take to be the x-axis)

∑ δ( ) = ( − )
( )

V x S x x ,
2n

n

where the strength of the potential S is an adjustable parameter.
The set of inter-planar distances = −+D x xn n n1 is a random process
with mean D and standard deviation s. Alternatively, the effects of
scattering by grain boundaries are often parameterized in terms of
the reflectivity R of an individual barrier, since this quantity is
more accessible to measurement than the strength S. In the pre-
sent model, these are related as follows:
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The scattering properties of each barrier is taken into account
by first-order perturbation theory and is incorporated into Fuchs’
formula as an angle-dependent contribution to the time of re-
laxation. In this way, the formula of Mayadas and Shatzkes for the
electrical conductivity s of a film of thickness d is [8]
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where D is the mean grain diameter and λ is the mean free path of
the conduction electrons. Also
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We note that Mayadas and Shatzkes considered further the effect
on the resistivity of disorder in the distribution of grain diameters,
characterized by a standard deviation s. They found that the dis-
order contributed with terms of the order ( − )k sexp F

2 2 ; i.e. a
negligible quantity for ordinary metals.

Finally, let sGB and s0 denote the conductivity of a bulk sample
made of identical material than the film; respectively in presence
and absence of grain boundaries. It is found that [8]
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In the formalism of the Boltzmann equation, the scattering of
carriers by the perturbations of the perfect lattice can be ac-
counted for in two different ways. First, the scattering probability
of the electrons by the lattice imperfections may be inserted into
the collision operator—or, in a well-known approximation—added
as a contribution to the time of relaxation τ. The second procedure
consists in taking them into account by means of adequate
boundary conditions. Usually, the first procedure is reserved for
distributed impurities or phonons, while the second is used in
order to account for external surfaces [9]. Unfortunately, the
strength of the impurity scattering can be incorporated into the
collision operator at best only in the form of a self-consistent Born
approximation [10].

Szczyrbowski and Schmalzbauer have criticized the treatment
of Mayadas and Shatzkes—where the effects of the grain bound-
aries enter only via a modification of the time of relaxation—by
pointing out that, for typical values of the Fermi wavelength, the
scattering strength from the barriers is so hight that the use of
Born's approximation may result in serious errors [11]. They pro-
posed that instead, for a more adequate treatment, these should be
taken into account by imposing adequate boundary conditions at
the added interfaces. Furthermore, reasoning that the exact shape
of the grains is not as important as their size or relative distribu-
tion, they proposed an alternative theory in which grain bound-
aries are represented by a triple array of parallel barriers oriented
in three perpendicular directions, one of which is the direction of
the current. The scattering at each barrier is described by a spec-
ularity parameter pGB and a transmittance, or probability of co-
herent passage, TGB. The remaining probability = − −q p T1GB GB GB

measures the fraction of electrons that are diffusely scattered at
the barriers. These quantities qGB, pGB and TGB are numbers be-
tween zero and one [11].

Unfortunately, Szczyrbowski and Schmalzbauer were unable to
present a complete prescription for calculating electrical con-
ductivities based on these premises. To do so is the objective of the
present work. In this paper we solve the Boltzmann transport Eq.
(1), for the case of a polycrystalline metallic film, by means of
Chambers' method [12]. Following Lucas, for a thin film of thick-
ness d, the boundary conditions are described by p0 and pd, as the
respective specularity parameters characterizing the surfaces at
z¼0 and z¼d; and we further define the quantities = −q p10 0 and

= −q p1d d. Grain boundaries are modeled as single array of par-
allel barriers (MS model) or, alternatively, as a triple, mutually
perpendicular, array of such barriers (SS model).

It is well known that the method of Chambers prescribes that
the out-of-equilibrium distribution function ( )f r v,1 can be calcu-
lated by summing a certain characteristic function over all classical
trajectories that end at a given point r inside the sample with a
given terminal velocity v . (The fact that Chambers’ method pro-
vides an exact solution of Boltzmann transport equation has been
proved in multiple occasions [13].) Since the summation over all
classical trajectories cannot be exactly performed (except in a very
restricted number of cases) in this paper we proceed by summing
over a finite random sample of these paths, which is numerous
enough to result in a conductivity calculated within a prescribed
accuracy. We note that, recently, a similar method was applied to
the calculation of the conductivity of thin polycrystalline wires
[14].

There has been some recent work using Monte Carlo simula-
tions to calculate the electrical conductivity in polycrystalline
metallic films, in which the authors examine the impact of surface
roughness and microstructure on the conductivity and make
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detailed comparison with the Fuchs–Sondheimer [3,4] and Maya-
das et al. [8] theories [15,16]. These authors also employ a de-
scription of the grain morphologies that is somewhat more rea-
listic than that of the SS model [16].
Fig. 1. Electrical resistivity (in units of bulk resistivity) of a polycrystalline film as a
function of the reflectance R of an individual grain boundary, according to the
theory of Mayadas and Shatzkes and the MS and SS models of the present paper.
The film thickness is d¼22 nm, with columnar grains with diameter D¼12.3 nm
and absence of disorder. Mean free path λ = 42 nm and = = =p p p 0d GB0 .

= −T R1GB .
2. Chambers' method

The method of characteristics, known in this context as Cham-
bers' method, is a powerful procedure for integrating partial dif-
ferential equations [12,17]. The characteristics are curves along
which the partial differential equation is equivalent to an ordinary
one; and also along which information is transmitted from the
boundary conditions to the point of interest. A particular property
of the Boltzmann transport equation is that these characteristics
are the classical trajectories; obtained by integrating =m d dtF v/ /
and = d dtv r/ . In the case of Eq. (1) these trajectories are straight
lines. (However, the situation is complicated in practice, because
the number of characteristics connecting the point of interest with
the boundaries is often countable infinite.) Integrating the Boltz-
mann equation in this way, it is seen that
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where the sum is taken over all classical trajectories that end at
the point r, with final velocity v , and start at some boundary—the
external surfaces of the sample or any grain boundary. Here ti is
the time spent by the classical particle when moving from the
given boundary to the point of interest along a given trajectory.

In a limited number of cases the sum ∑ τFei i
t /i may be evaluated

exactly. It is further known that, in most occasions, the sum cannot
be described by an ordinary function [14]. In this paper we apply a
procedure that works even in these cases. The method is only
approximate, but its accuracy can be maintained at a pre-de-
termined level. Instead of considering the complete set of denu-
merable trajectories, we envision only a finite random sample of
them. Given a point r inside the sample and a possible velocity v ,
we compute a number of trajectories that start at r in the direction
of v . Each time that the trajectory encounters a surface or inter-
face, a random number is generated and the subsequent fate of the
particle is decided according to the assumed set of probabilities. If
the trajectory reach an external surface then, following Lucas [6], a
fraction pa of the trials the particle is specularly reflected—
meaning that the normal component of velocity is reversed—
while the remaining fraction of the trials = −q p1a a the particle is
removed and the trajectory is ended. (a¼0 or a¼d for the surfaces
at z¼0 or z¼d in a film of thickness d.) If the trajectory encounters
a grain boundary then, following Szczyrbowski and Schmalzbauer
[11], a fraction pGB of the trials the particle is specularly reflected,
another fraction TGB of the trials the particle traverses unmodified
the boundary, while in the remaining fraction of cases

= − −q p T1GB GB GB the particle is again removed and the trajectory
terminated. The net time of flight ti from start to finish of each
trajectory is accumulated, and the sum in (9) is performed, with
each trajectory having equal weight.

This is a procedure that is essentially exact within the frame-
work of Boltzmann semiclassical theory. In this paper, we apply it
to two different models that purport to mathematically represent
grain boundaries. The first (MS model) is an infinite array of plane
barriers, distributed at random distances Dn in the direction of
perpendicular to the electric field E; as in Eq. (2). The second (SS
model) assumes a triple array of similar barriers, situated in three
mutually perpendicular directions.

In order to compare the results of these procedures with those
of the Mayadas and Shatzkes (Eqs. (4)–(8)) we assume that we can
approximately identify = −R T1 GB in the case =p 0GB . In Fig. 1 we
plot the resistivity of a filmwith thickness d¼22 nm, having grains
with diameters D¼12.3 nm, in case that the mean free path is
λ = 42 nm. It is assumed that the scattering from the film's sur-
faces is completely diffuse. It is seen that the Mayadas and
Shatzkes theory overestimates the effect of grain boundary scat-
tering on the resistivity of thin films. This is especially evident in
cases when the reflectivity coefficient R is comparable with one.
Instead, our treatment predict a nearly lineal dependence of the
resistivity on R. The slight increment of the resistivity in the SS
model, in comparison with that of the MS, is due to the small
contribution due to grain boundaries that run parallel to the di-
rection of the electric field.

It is interesting to consider the dependence of the resistivity of
thin films on the transmissivity of grain boundaries TGB. Typical
curves, calculated according to the SS model, are shown in Fig. 2.
We assume that the surfaces are totally diffuse with

= = =p p p 0d GB0 and where d¼49 nm and D¼11.1 nm. It is ob-
served that the resistivity monotonically increases as the trans-
missivity diminishes; and that this dependence may result in an
important effect.

The effects of changing the diameter of grain boundaries may
also be considerable. This is shown in Fig. 3, were we plot the
film's resistivity versus mean free path, according with the SS
model, for of film of thickness d¼49 nm and also in the extreme
diffuse case = = =p p p 0d GB0 ; with the transmissivity set to

=T 0.7GB .
In these calculations we have assumed that all grains have the

same diameter. We consider now the effects on the resistivity of
the film caused by disorder in the distribution of diameters. As a
typical example, we assume (in the SS model) a lognormal dis-
tribution of grain diameters, with mean D¼49 nm and standard
deviation =s 0.3 D. In Fig. 4 we plot the fractional change in re-
sistivity as a function of the mean free path for a film in the case

= = =p p p 0d GB0 for d¼49 nm. It is seen that, in accordance with
the calculation of Mayadas and Shatzkes, the effect of disorder in
the distribution of grain diameters on the film's resistivity is quite
small [8].

We conclude this section by investigating the degree of accord



Fig. 2. Electrical resistivity (in units of bulk resistivity) of a polycrystalline film as a
function of the mean fee path λ for different values of the probability of coherent
passage TGB, according to the SS model of the present paper. The film thickness is
d¼49 nm, with columnar grains with diameter D¼11.1 nm and absence of dis-
order. The rough limit = = =p p p 0d GB0 is assumed.

Fig. 3. Electrical resistivity (in units of bulk resistivity) of a polycrystalline film as a
function of the mean fee path λ for different values of the grain diameters, ac-
cording to the SS model of the present paper. The film thickness is d¼49 nm, with
columnar grains and absence of disorder Extreme rough limit is assumed

= = =p p p 0d GB0 . The probability of coherent passage =T 0.7GB .

Fig. 4. Fractional resistivity change ρ ρ ρ ρ ρΔ = ( − )/ /D (where ρD, ρ are the re-
sistivities with and without disorder) of a polycrystalline film as a function of the
mean free path λ for different values of the probability of coherent passage TGB,
according to the SS model of the present paper. The film thickness is d¼49 nm,
with columnar grains with mean diameter D¼49 nm. Grain diameters are dis-
tributed with lognormal probability with standard deviation =s D0.3 . Extreme
rough limit is assumed with = = =p p p 0d GB0 .
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of the present formalism with experimental results. We examine
the data of two recent determinations of the dependence on
thickness of the resistivity of thin polycrystalline gold films, where
the authors have also measured the mean grain diameter D. In
Fig. 5a we plot the values of the resistivities measured by Zhang
et al. [18]. It is seen that the values can be fitted to the present MS
model by assuming that p0¼0.7, pd¼0.6, R¼0.65 and mean free
path λ = 2600 nm; and also to the SS model with around the same
values of p0 and pd, but with R¼0.50 and λ = 3200 nm. On the
other hand, we found that the data can also be accurately fitted to
the original Mayadas and Shatzkes theory, with p0¼0.5, pd¼0.5,
R¼0.37 and a mean free path λ = 4480 nm [8]. We note that the
latter quantity accords in an average sense with the values of R
inferred by Zhang et al. from the residual resistivities [18]. The
procedure advanced by these authors indicates that the value of R
depends on thickness, varying from around 0.40 for thin films to
0.23 for thick ones.

The second set of measurements, reported by Bahamondes
et al., are plotted in Fig. 5b [19].
3. Stacked grains

There is a notable phenomenon, related to the fabrication of
thin metallic films, whose importance appears to have not been
adequately appreciated in the past. If a metallic film is thin en-
ough, the grains (which are present in greater or smaller sizes in
most fabrication processes) extend from one of the external sur-
faces to the other, in the shape of a column. When the thickness is
greater than a certain threshold, this columnar structure is re-
placed by another where the grains are stacked, forming two or
more layers (Fig. 6). The surface created in this way—formed by
the set of grain boundaries with the approximate shape of a plane
parallel to the external boundaries of the film—scatters additional
electrons and contribute to the resistivity of the film.

The fact that the resistivity of a film increases when a fresh
interface parallel to the plane of the film is created was first found
experimentally in 1964 [20]. The earliest theoretical treatment of
this phenomenon assumed that no additional scattering occurs at
this interface [21]. This approximation soon proved to be in-
adequate. Carcia and Suna proposed a new treatment based on the
introduction of a probability of coherent passage across the in-
terface [22]. This formalism was extended by Dimmich [23], who
added the effects of grain boundaries localized perpendicularly to
the plane of the film, in a way that parallels the theory of Mayadas
and Shatzkes [8]. However, a detailed examination of the scatter-
ing process at the interface shows that there coexist specular and
diffuse processes that should be modeled by parameters of two
different kinds. One describes the probability that a conduction
electron is reflected in a nondiffuse way by the interface. The other
measures the probability of traversing the interface in a coherent
way. The sum of these probabilities is less than one. The difference
describes the probability that the carrier leaves the out-of-



Fig. 5. (a) Experimental data (Ref. [18]). (R, p0, pd, λ) parameters: SS model (0.50, 0.6, 0.7, 3.2 μm); MS model (0.65, 0.7, 0.6, 2.6 μm) and Mayadas and Shatzkes theory (0.37,
0.5, 0.5, 4.48 μm). (b) Experimental data (Ref. [19]). (R, p0, pd, λ) parameters: SS model (0.16, 0.0, 0.0, 3.9 μm); MS model (0.23, 0.0, 0.0, 3.9 μm) and Mayadas and Shatzkes
theory (0.18, 0.0, 0.0, 18 μm).

Fig. 6. (a) If a metallic film is thin enough, grains tend to grow in the form of a columnar structure. (b) When the thickness is increased beyond a threshold, grains are
stacked. The scattering properties of the grain boundaries are described by a specularity parameter pGB and a probability of coherent passage TGB. The fraction

= − −q p T1GB GB GB is the probability of being diffusely scattered at the interface.

Fig. 7. Fractional resistivity change ρ ρ ρ ρ ρΔ = ( − )/ /S (where ρS, ρ are the resistiv-
ities with and without stacked grains) of a polycrystalline film as a function of the
mean free path λ for different numbers of stacked grains, according to the SS model
of the present paper. The film thickness is d¼99 nm, with columnar grains with
mean diameter D¼41 nm and absence of disorder. Extreme rough limit is assumed

= =p p 0.00d0 ; with = =p T 0.01GB GB .
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equilibrium distribution and do not contribute further to the
conduction process [24,25]. This prescription coincides with the
boundary conditions independently advanced by Szczyrbowski
and Schmalzbauer [11]. We note that, nowadays, all theoretical
descriptions of the scattering of carriers at magnetic multilayers
are made in terms of these two kinds of parameters [25,26].

In this section we calculate the effect of stacked grain by the
same semi-numerical version of Chambers' method already de-
scribed. This differs with previous treatments that proceed by
matching distribution functions along the interfaces [27]. An ex-
ample of the effects of the creation of new interfaces is shown in
Fig. 7. We consider a film with thickness d¼99 nm and with

= =p p 0d0 . In order to illustrate the case with two stacked grains,
we assume that these have equal height h¼49.5 nm. Similarly, in
the case of three stacked grains, we assume that all heights are
equal with h¼33 nm, etc. In all the cases shown, we assume that

= =p T 0.01GB GB . It is clear that the effect of the stacking of grains
may be considerable. Furthermore, it is seen that the added frac-
tional resistivity is nearly proportional to the number of stacked
grains.

It is interesting to note that the creation of a new interface
inside a film does not always result in an increment of its re-
sistivity. In order to see how this effect works, we envision a
polycrystalline thin film with thickness d¼49 nm, with λ = 98 nm,
p0¼1.0 and pd¼0.1 (Fig. 8). Inside the film, we create an interface
characterized by =T 0GB and different values of the reflectivity pGB.
By examining the values of the electrical conductivity of this film
as a function of the distance between the interface and an external
surface we conclude that—if the interface is near enough to the
surface and its reflectivity pGB is sufficiently high—the presence of
this interface may enhance the film conductivity, instead of di-
minishing it.

As an example of how this circumstance may appear in prac-
tice, let us consider the measurements of the electrical



Fig. 8. Electrical conductivity with an interface created between two stacked grains
(in units of the conductivity without interface) of a polycrystalline film as a func-
tion of the distance Δd between the interface and a film surface z¼d for different
values of the pGB parameter. The film thickness is d¼49 nm. Mean free path
λ = 98 nm and =p 1.00 , pd¼0.1. =T 0.0GB .

Fig. 9. Tentative fit of conductivity data sF of gold films (in units of bulk con-
ductivity sB) from Chen et al. [28]. Continuous line is the present theory with as-
sumed interfaces at =d 105 nm1 and =d 560 nm2 . Following Chen et al. we take
λ = 41 nm and the relation between grain diameter and film thickness follows from
Table 2 of this reference. In this fit, we uniformly assume that = =T p 0.01GB GB , and

= =p p 0.2d0 .
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conductivity of polycrystalline Au films reported by Chen et al. [28]
(Fig. 9). These authors measured the surface roughness of the films
and conclude that it results in completely diffuse scattering. They
also measured the diameters of the grains as a function of the
film's thickness d, and observed that the crystallite size increased
roughly linearly with increasing d for ≤d 100 nm; and was con-
stant thereafter. Also, they found that the conductivity had a
pronounced non-monotonous dependence on thickness; a fact
that they interpreted as a conductivity drop occurring at a thick-
ness of around 200 nm that was caused, in turn, by a redistribution
of crystallites inside the film.

As an exercise, we offer an alternative interpretation in which
these unusual measurements are explained in terms of a con-
ductivity enhancement (instead of a conductivity drop) caused by
the mechanism just illustrated in Fig. 8. We note that the careful
measurements of the samples' microstructure reported by the
authors are consistent with the stacking of grains, giving rise to a
new interface at ≃d 100 nm. Indeed, they wrote that “small {111}
crystallites began their growth in 125 nm < <d 200 nm and they
grew on top of previously {220} crystallites.” [28] We conjecture
that a second similar interface occurs at ≃d 600 nm. The fact that
this interpretation is reasonable is shown by the continuous line in
Fig. 9; which is a fit of our SS model obtained by the simple pre-
scription of a mean free path λ = 41 nm, = =p T 0.01GB GB ,

= =p p 0.2d0 and added interfaces appearing at d¼105 nm and
d¼560 nm.
4. Matthiessen's rule

As is well known, Matthiessen's rule is an empirical prescrip-
tion which states that the resistivities due to different scattering
processes approximately combine additivity to give the total re-
sistivity of the sample. The rule has been related to the additivity
of the transition probabilities in the collision operator, and to the
maximization of the production of entropy [29]. In the present
formalism, we have found a different form of Matthiessen's rule
that has proved to be valid with high accuracy.

As previously explained, the resistivity ρ of a given sample is a
function of the reflectivities p0 and pd, which describes the scat-
tering by the external surfaces, and the probabilities pGB, TGB which
characterize the effect of the scattering by grain boundaries. We
define the resistivity ρGB as the component of the total resistivity ρ
that is produced by the exclusive influence of grain boundaries—
with the exclusion of the effects of surface scattering—by calcu-
lating the resistivity for the given values of pGB and TGB; but by
putting p0¼pd¼1. In the same way, the resistivity ρS—accounting
for the effects of surface scattering only—is calculated by retaining
the given values of p0, pd, but by setting =p 0GB and =T 1GB . (Thus,
ρS coincide with the resistivity calculated according to the Fuchs–
Sondheimer prescription [3,4]). The sum of ρGB and ρS cannot be
equal to ρ, because both contain the resistivity of the bulk ρ0. Thus,
we should subtract ρ0 once. In this way, the proposed form of
Matthiessen's rule appears in the form

ρ ρ ρ ρ= + − ( ). 10GB S 0

In Fig. 10 we show a typical example of the validity of this
expression. It is seen that, even if the values of both components
ρGB and ρS vary widely, Matthiessen's rule, in its version of Eq.
(10), is accurately obeyed within the precision of the present nu-
merical calculation.
5. Conclusions

In this paper we report calculations of the electrical con-
ductivity of thin polycrystalline metallic films, resulting from an
application of the method of Chambers—a procedure that is
known to provide accurate solutions of the Boltzmann transport
equation [12]. These results are contrasted with the well-known
theory of Mayadas and Shatzkes, which proceeds from an ap-
proximation valid only for small values of the reflectivity R of an
individual grain boundary [8]. Also, in contrast with the latter
formalism, we characterize grain boundaries by means of two
independent parameters: a probability pGB of specular reflection
and a probability TGB of coherent passage; with the balance

= − −q p T1GB GB GB measuring the probability of diffuse scattering
that demotes the carriers from the out-of-equilibrium distribution
and, thus, contributes directly to the resistivity.

We note that the present procedure can be extended in ways



Fig. 10. Illustration of the validity of Matthiessen's rule Eq. (10) expressing the film
resistivity as a combination of contributions from grain boundaries (ρGB), surface
scattering (ρS) and bulk (ρ0). In this case, the film thickness is d¼49 nm, grain
diameter D¼11.1 nm with no disorder; and = =p p 0.0d0 ; =p 0.3GB , =T 0.2GB .
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quite beyond the reach of the theory of Mayadas and Shatzkes. In
this paper we have considered the effects of stacked grains. Also,
recently, the method has been applied to the calculation of the
resistivity of polycrystalline thin wires where there is no analogue
to Mayadas and Shatzkes treatment [14]. Of course, the basics
assumption of these models—that grain boundaries are parallel
planes—are convenient from the theoretical point of view; but
perhaps no very accurate in practice. We note that the present
Montecarlo procedure can cope with grain boundaries provided
with more realistic morphologies [16] or having precise scattering
properties obtained from microscopic calculations [30,31].

On the other hand, we have found that it is possible to obtain
accurate fits of measurements of the resistivity versus thickness of
thin films to any one of the three theories examined here—re-
sulting, of course, in different values of the fitting parameters.
Although this obviously means that neither MS nor SS models
contradict reality, it does not result in a clear-cut criterium that
rejects one in comparison with the other. Furthermore, the present
comparison with experience indicates that the experimental evi-
dence may not, at present, be capable of discriminating between
these approximate and the more realistic formulations.

Finally, we note that even preposterous theories result in
somewhat accurate fits to resistivity-thickness data [32]. Thus, we
must conclude that a decisive confirmation of the superiority of
the present—or an alternative—formalism must be a consequence
of independent measurements of some of these fitting parameters
or, alternatively, the determination of physically different quan-
tities depending on common parameters—as, for instance, the
resistivity and Hall voltage of Ref. [19]. Thus, the resolution of this
important issue must be reserved for future research.

A copy of the program (in FORTRAN) used here for calculating
the conductivity of thin polycrystalline films may be obtained from
the corresponding author.
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