Design of a Prototype for Selection and Processing Earthquake Signals

M. V. T. Echeverría, H. M. Echeverría, E. F. Angulo, F. A. Pontigo and D. S. Munita

Abstract—Chile is a seismic country and, as such, requires create and develop automatic systems that allow analyze seismic signals. Count with timely information, for handling contingencies, allows ensuring the chain of command in short time. The problem arises in the high learning curve for people who are not specialists in seismic field due to the problem’s complexity. For this reason, we worked in the creation of a prototype for Selection and Processing of Seismic Signals, developed in Python, taking advantage of skills and specialists from the Department of Geophysics of Universidad de Chile.

Keywords—Geophysics, Python, Signal Processing.

I. INTRODUCCIÓN

LA TIERRA no es un cuerpo estático sino que ha estado y está sujeta a una continua actividad, es decir, nuestro planeta es un sistema dinámico. Esto se debe a la interacción de las fuerzas geológicas del interior de la tierra.

Las fuentes naturales o artificiales de energía pueden producir ondas sísmicas. Las ondas de un movimiento telúrico viajan a través de la corteza terrestre, la que no es regular. Las ondas sísmicas se reflejan parcialmente al chocar con un medio más denso, se refractan al pasar de un tipo de corteza a otro y se interfieren entre sí. Además, aumenta la distorsión de las ondas en la medida que se alejan de su punto de origen. Esta distorsión tiene como consecuencia que los sensores no siempre sean capaces de captar nítidamente el fenómeno.

La deformación del terreno, y la acumulación de tensiones en la superficie de la tierra, está vinculada a la dinámica de la litosfera y, más en concreto, a la teoría de la tectónica de las placas (La litosfera está dividida en un conjunto de placas independientes que se desplazan arrastradas por las corrientes de convección de la atmósfera, con velocidades relativas de unos pocos centímetros al año). En el mundo se pueden distinguir 17 placas, de las que 6 se consideran principales [1].

En Chile la sismicidad se caracteriza por tres factores: La frecuencia con que ocurre, su magnitud y la gran diversidad de ambientes tectónicos [2]. Recordemos que Chile tiene una ubicación en el mundo que lo hace un lugar ideal para estudiar este tipo de fenómenos (Placa de Nazca).

II. INTRODUCCIÓN A LOS MOVIMIENTOS SÍSMICOS

Como producto de la interacción entre placas, se producen los sismos, que consisten en el movimiento de la tierra debido a las ondas sísmicas. Estas ondas sísmicas pueden ser de varios tipos, siendo las principales las ondas P y S. Las ondas P o primarias son ondas de compresión y longitudinales. Las ondas S (o secundarias) son ondas transversales o de cizalla [2][3]

Fig. 1. Ejemplo del movimiento de una Onda P y una Onda S respectivamente.

En la Fig. 1 se observan dos de las ondas más características de un sismo. La presencia de estas son detectadas por instrumentos llamados sismógrafos, que consisten en un sistema masa resorte y amortiguador (un sistema de segundo orden) y un sistema de grabación de datos, ya sea en un medio analógico (aguja sobre tambor con papel ahumado) o mediante un medio digital (computador con conversor analógico digital). [4][5][6]

Conociendo los tiempos de llegada de las ondas P y S, y la duración del sismo, es posible calcular la localización del epicentro, la magnitud y el tiempo origen del terremoto, teniendo 3 estaciones sísmicas como mínimo.

III. MATERIALES Y MÉTODOS

Para el desarrollo de este proyecto, los registros de señales sísmicas fueron proporcionados por el Departamento de Geofísica de la Universidad de Chile y corresponden a información registrada de acelerómetros de banda ancha e instrumentos de periodo corto, en las tres componentes o canales (vertical, norte-sur, este-oeste). Contienen información de cada una de las estaciones de la red sísmológica desde La Serena hacia el norte, abarcando el periodo del 30 de marzo al 5 de abril de 2014. Los archivos están en formato MiniSEED, con cortes de un día por cada canal.

Además de entregar el registro de las señales (archivos MiniSeed), el Departamento de Geofísica hizo entrega de un documento en formato CSV que contiene las etiquetas, es decir, los tiempos en donde se identifica la llegada de las ondas P y S de cada sismo.