Spin-orbit effects on magnetically induced current densities in the M_4^2 ($M = B, Al, Ga, In, Tl$) clusters

Luis Alvarez-Thon a,*, Wilson Caimanque-Aguilar b

aUniversidad Central de Chile, Toesca 1783, Santiago, Chile
bUniversidad Andrés Bello, Facultad de Ciencias Exactas, Ph.D. Program in Molecular Physical Chemistry, Santiago 8370146, Chile

ARTICLE INFO

Article history:
Received 2 October 2016
In final form 11 January 2017
Available online 16 January 2017

Keywords:
Spin-orbit
Aromaticity
Current density

ABSTRACT

We report about the spin-orbit effects on the aromaticity of the B_4^2, Al_4^2, Ga_4^2, In_4^2, and Tl_4^2 clusters via the magnetically-induced current density method. All-electron density functional theory (DFT) calculations were carried out using the four-component Dirac-Coulomb (DC) Hamiltonian, including scalar and spin-orbit relativistic effects. The relativistic values for ring current strengths were obtained by numerical integration over the current flow. These values were compared to the scalar relativistic and non-relativistic values, in order to assess the corresponding contributions to aromaticity. It was found that in the heavy cluster, Tl_4^2, there is a significant influence of both scalar and spin-orbit relativistic effects.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The most typical definition of aromaticity is related to benzene, where the presence of a π system above and below the plane of the hexagonal ring gives rise to a symmetric structure with bond length equalization, thermodynamic stability, reactivity, special magnetic properties, etc. The six π electrons in benzene is a special case of Hückel’s (4n + 2) π-electron rule that defines an aromatic hydrocarbon molecule. However, after the experimental preparation and theoretical characterization of the Al_4^2 cluster by Boldyrev and Wang et al. [1], the concept of aromaticity has been extended to all-metal and transition-metal systems and [2–4]. As a consequence, this concept has evolved and it has been given a variety of definitions [5]. Among the various indices of aromaticity, the magnetic criteria are the most accepted, because the delocalization of electrons around the molecular framework of a molecule, depend directly on the induced current upon the application of an external magnetic field. Schleyer and co-workers developed the concept of nucleus-independent chemical shifts (NICS) [6]. This index, implemented in most of the available quantum chemical software systems, has become a popular probe of aromaticity among chemists, due to its simplicity and low computational cost. Unfortunately NICS values cannot unambiguously determine aromaticity [7–12].

In this study, we employ the most reliable magnetic criterion, namely, the magnetically-induced current density (MICD) method which is based on the application of an external magnetic field, that induces a current density around the molecular frame [13–16]. This method provides both qualitative and quantitative descriptions of electron delocalization. In the qualitative description it is useful to draw current-density maps (CDMs) for the visualization of the streamlines that flow in a molecule or a ring [17–20]. In these CDMs, aromatic compounds support a diatropic current (clockwise direction) and antiaromatic compounds support a paratropic ring current (anticlockwise direction). In the quantitative description, an aromaticity index is obtained from integration of the current density over a plane that cuts a specific bond. This index is the net ring current strength (RCS) around the molecular ring [21–24]. For an up-to-date review of the subject see Ref. [25].

In this letter we study the influence of the spin-orbit (SO) effect on the aromaticity of the title clusters. Considering that, in the heavy indium and thallium clusters, strong relativistic effects are expected [26–29], we have carried out relativistic calculations using the four-component Dirac-Coulomb (DC) Hamiltonian. Previous theoretical studies have reported that all of these clusters are square planar and possess aromatic character. The B_4 cluster was first reported by Sundholm et al. [30]. Boldyrev et al. presented theoretical and experimental evidence of aromaticity in the all-metal Al_4^2 system [1]. The origin of the aromaticity in this cluster, was proposed to be both σ- and π-aromatic [1,31]. The Ga_4^2 and In_4^2 clusters were also experimentally reported, presenting double (σ- and π-) aromaticity [32]. The heaviest cluster

* Corresponding author.
E-mail address: luis.alvarez@ucentral.cl (L. Alvarez-Thon).

http://dx.doi.org/10.1016/j.cplett.2017.01.027
0009-2614/© 2017 Elsevier B.V. All rights reserved.