Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity

Ramona Barbieria, Erika Coppoa, Anna Marchese\textsuperscript{b,*,**}, Maria Dagliac, Eduardo Sobarzo-Sánchez\textsuperscript{d,e}, Seyed Fazel Nabavif, Seyed Mohammad Nabavi\textsuperscript{f,*}

a Sezione di Microbiologia DISC University of Genoa, Italy
b Sezione di Microbiologia DISC IRCCS San Martino IST University of Genoa, Italy
c Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Italy
d Laboratory of Pharmacological Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Spain
e Dirección de Investigación, Universidad Central de Chile, Santiago, Chile
f Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

\textbf{ARTICLE INFO}

\textbf{Article history:}
Received 29 August 2016
Received in revised form 9 December 2016
Accepted 12 December 2016
Available online 19 December 2016

\textbf{Keywords:}
Alkaloids
Antimicrobial activity
Polyphenols
Sulfur-containing phytochemicals
Terpenoids

\textbf{ABSTRACT}

In recent years, many studies have shown that phytochemicals exert their antibacterial activity through different mechanisms of action, such as damage to the bacterial membrane and suppression of virulence factors, including inhibition of the activity of enzymes and toxins, and bacterial biofilm formation. In this review, we summarise data from the available literature regarding the antibacterial effects of the main phytochemicals belonging to different chemical classes, alkaloids, sulfur-containing phytochemicals, terpenoids, and polyphenols. Some phytochemicals, besides having direct antimicrobial activity, showed an in vitro synergistic effect when tested in combination with conventional antibiotics, modifying antibiotic resistance. Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects.

© 2016 Elsevier GmbH. All rights reserved.

\textbf{Contents}

1. Introduction ... 45
2. Phytochemicals ... 45
 2.1 Alkaloids .. 45
 2.2 Sulfur-containing phytochemicals ... 47
 2.3 Terpenoids ... 50
 2.4 Carotenoid ... 55
 2.5 Polyphenols ... 56
3. Conclusion .. 64

\textbf{Abbreviations:}
MDR, multi-drug resistant; MIC, minimum inhibitory concentration; MRSA, methicillin resistant Staphylococcus aureus; MBC, minimum bactericidal concentration; MRSE, methicillin resistant Staphylococcus epidermidis; MSSA, methicillin susceptible Staphylococcus aureus; QS, quorum-sensing; IZ, inhibition zone; PIC, fractional inhibitory concentration; IC, epicatechin; EGC, epigallocatechin; ECG, epicatechin gallate; ECGG, epigallocatechin gallate; ND-1, New Delhi metallo-beta-lactamase-1; ATP, adenosine triphosphate; VRE, vancomycin-resistant Enterococcus faecalis; PACS, proanthocyanidins; PPC, purple prairie clover.

* Corresponding author at: Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, P.O. Box 19395-5487, Iran.
** Corresponding author.
E-mail addresses: anna.marchese@unige.it (A. Marchese), nabavi208@gmail.com (S.M. Nabavi).

\textbf{CrossMark}

http://dx.doi.org/10.1016/j.micres.2016.12.003
0944-5013/© 2016 Elsevier GmbH. All rights reserved.