Regular Paper

Using autonomous search for solving constraint satisfaction problems via new modern approaches

Ricardo Soto a,b,c, Broderick Crawford a,d,e, Rodrigo Olivares a,f,* Cristian Galleguillos a,
Carlos Castro g, Franklin Johnson h, Fernando Paredes i, Enrique Norero j

* Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
b Universidad Autónoma de Chile, Santiago, Chile
c Universidad Científica del Sur, Lima, Peru
d Universidad Central de Chile, Santiago, Chile
e Universidad San Sebastián, Santiago, Chile
f Universidad de Valparaíso, Valparaíso, Chile
g Universidad Técnica Federico Santa María, Valparaíso, Chile
h Universidad de Playa Ancha, Valparaíso, Chile
i Escuela de Ingeniería Industrial, Universidad Diego Portales, Santiago, Chile
j Facultad de Ingeniería, Universidad Santo Tomás, Viña del Mar, Chile

A R T I C L E I N F O

Article history:
Received 21 June 2015
Received in revised form 21 February 2016
Accepted 16 April 2016
Available online 21 April 2016

Keywords:
Constraint programming
Autonomous search
Metaheuristics
Constraint satisfaction problems
Enumeration strategies
Optimizer-algorithms

A B S T R A C T

Constraint Programming is a powerful paradigm which allows the resolution of many complex problems, such as scheduling, planning, and configuration. These problems are defined by a set of variables and a set of constraints. Each variable has non-empty domain of possible value and each constraint involves some subset of the variables and specifies the allowable combinations of values for that subset. The resolution of these problems is carried out by a constraint satisfaction solver which explores a search tree of potential solutions. This exploration is controlled by the enumeration strategy, which is responsible for choosing the order in which variables and values are selected to generate the potential solution. There exist different ways to perform this selection, and depending on the quality of this decision, the efficiency of the solving process may dramatically vary. Autonomous search is a particular case of adaptive systems that aims at improving its solving performance by adapting itself to the problem at hand without manual configuration of an expert user. The goal is to improve their solving performance by modifying and adjusting themselves, either by self-adaptation or by supervised adaptation. This approach has been effectively applied to different optimization and satisfaction techniques such as constraint programming, metaheuristics, and SAT. In this paper, we present a new Autonomous Search approach for constraint programming based on four modern bio-inspired metaheuristics. The goal of those metaheuristics is to optimize the self-tuning phase of the constraint programming search process. We illustrate promising results, where the proposed approach is able to efficiently solve several well-known constraint satisfaction problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Constraint Programming (CP) is a powerful paradigm which allows the resolution of many complex problems, such as scheduling, planning, and configuration. These problems are defined by a set of variables and a set of constraints, each variable has a nonempty domain of possible values. Each constraint involves some subset of the variables and specifies the allowable combinations of values for that subset. A solution to the problem is defined by an assignment of values to variables that does not violate any constraints. The resolution process is carried out by a search engine, commonly called solver, which attempt to reach a result by building and exploring a search tree of potential solutions. The construction of the tree can be divided into two main phases: enumeration and propagation. The first one selects the order in which variables and values are chosen, while propagation tries to eliminate the values having no chance to reach a solution. The enumeration is a key phase on the solving process as the performance is greatly influenced by the selection of an appropriate enumeration strategy. However, selecting the proper strategy is known to be hard as the performance of strategies are commonly unpredictable.

* Corresponding author at: Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
E-mail address: rodrigo.olivares@uv.cl (R. Olivares).

http://dx.doi.org/10.1016/j.swevo.2016.04.003
2210-6502/ © 2016 Elsevier B.V. All rights reserved.